Case-Based Route Planning
in the Mexico City Subway System

Andrés Gomez de Silva Garza' and Lourdes Domenzain Ortega!

! Instituto Tecnologico Auténomo de México (ITAM), Rio Hondo #1, Colonia Tizapan-San
Angel, 01000—Meéxico, D.F., México
{agomez, domen}@itam.mx

Abstract. The phrase “nearest-neighbor” is used in Case-Based Reasoning
(CBR) to refer to a family of methods or heuristics for determining, during case
retrieval, the similarity between a new problem to be solved and the previously-
solved problems associated with the cases in a system’s memory. In most
problem-solving domains to which CBR has been applied, the concept of
“nearness” is abstract, and determining whether a previously-solved problem is
a “neighbor” to a new problem situation or not is done metaphorically.
However, when the task to be performed involves route planning or related
geographically-oriented activities, the original spatial connotations of
“nearness” and “neighbor” come into play. In this paper we discuss the
representation, storage, retrieval, and adaptation issues related to the
measurement of nearness and the concept of neighborhood in case-based route
planning systems in general. We also describe a particular system called
SISBUSEC which plans routes in Mexico City’s subway system and discuss
differences and similarities with similar systems.

Keywords: case-based route planning, nearest-neighbor.

1 Introduction

The phrase “nearest-neighbor” is used in Case-Based Reasoning (CBR) to refer to a
family of methods or heuristics for determining, during case retrieval, the similarity
between a new problem to be solved and the previously-solved problems associated
with the cases in a system’s memory. In most problem-solving domains to which
CBR has been applied, the concept of “nearness” is abstract, and determining whether
a previously-solved problem is a “neighbor” to a new problem situation or not is done
metaphorically. As an example, if the cases in a system represent the designs of
buildings (e.g., as in [1]) and a new set of problem requirements specified to the
system include the desire to design a 30-storey office building in an earthquake zone,
then the system might retrieve a case containing the design of a 35-storey office
building in an earthquake zone. The values of both the building-function anf:l the
ground-stability parameters in the description of the new problem and in the remeve:d
case match identically, and perhaps all other earthquake zone office building cases in
the case memory have a value smaller than 25 or greater than 35 for the number-of-

© A. Gelbukh, A. Kuri (Eds.) Received 25/05/07
Advances in Artificial Intelligence and Applications Accepted 31/08/07
Research in Computer Science 32, 2007, pp. 269-281 . Final version 30/09/07

270 Andrés Gémez de Silva Garza, Lourdes Domenzain Ortega

floors parameter, so the retrieved case is the “nearest neighbor” to the new problem
situation available in the case base. However, none of these relevant, descriptive
features (building-function, ground-stability, and number-of-floors) of the problem
specification and design description have spatial values. Measuring the “distance”
between two values of a numeric feature (even a non-spatial one) such as number-of-
floors is straightforward (it simply involves finding the difference between the two
values), but determining “distance” between different possible values of each of the
non-numeric features might have to be done in an ad hoc manner.

For instance, with respect to the building-function parameter, domain knowledge
might tell us that a value of hotel is closer to the desired value of office-building than
a value of parking-lot is, for the purpose of determining the potential usefulness of a
case. This domain knowledge would have to be incorporated into the part of the case
retrieval process that measures similarity. “Similarity” is a more precise term than
“distance” when discussing non-spatial features, though similarity is the inverse of
distance: the nearest-neighbor case would be the one that is most similar, i.e., least
“distant,” when compared to the new problem situation. All these observations apply
to many other typical problem-solving domains that have been addressed from the
standpoint of CBR, such as educational, medical and legal reasoning, aside from
design tasks such as the one used above for illustrative purposes.

However, when the task to be performed involves route planning or related
geographically-oriented activities, the original spatial connotations of “nearness” and
“neighbor” come into play. Of course, the origin of the phrase “nearest-neighbor” is
spatial in origin. One well-known algorithm for tackling the NP-complete Traveling
Salesperson Problem (TSP) is known as the “nearest-neighbor heuristic” precisely
because it involves having the “salesperson” cyclically decide to go to the nearest city
(out of all the possible cities connected to the one he/she is currently in) at each step
of the algorithm until all cities have been visited [2]. Prim’s algorithm for finding the
minimum spanning tree of a graph (with applications to minimizing the amount of
gold/copper used in printed circuit design, for instance) also proceeds in stepwise
fashion by finding the node of a graph that hasn’t yet been visited nearest to the node
that was last visited while constructing said tree [3]. These spatial uses of the phrase
“nearest-neighbor” were eventually applied to more general, more .abstract, non-
spatial, but analogous situations such as the determination of similarity during the
generic case retrieval process.

In this paper we discuss the representation, storage, retrieval, and adaptation issues
related to the measurement of nearness and the concept of neighborhood in case-
based route planning systems in general. We also describe SISBUSEC, a system that
we have developed which performs case-based route planning in order to find routes
within a city’s subway system. The system currently has knowledge about Mexico
City’s subway, but we will be expanding it shortly. Mexico City’s subway system at
present includes 11 interconnected lines that contain a total of 174 stations (counting
transfer stations multiple times, once for each subway line involved in the transfer, as
they are physically different and involve a displacement in space from one line to the
other, even if their names are the same) and total 202 kilometers in length. As we
present the relevant research issues, we also mention related work that has addressed
some of these issues, sometimes in similar ways to SISBUSEC and sometimes
differently. :

Case-Based Route Planning in the Mexico City Subway System 271

2 Case Representation

In general a new route planning problem might be specified by stating (or, in case the
problem is being solved by an autonomous robot or vehicle, by sensing) the current
location and stating a desired location (presumably different from the current one).
We shall use the terms “origin location” and “destination location,” abbreviated /, and
14, to refer to these points from now on. A solution to this type of problem would be a
sequence of points /y, /;, [5, I3, ..., 1, that form a route of length n between /, and /,,
where /y=/, and /,=I, for the route-planning problem that said sequence is a solution
to. The intermediate points /;, [, I3, ... might represent landmarks or points of interest
to look out for or pass through or next to, locations or intersections where a change of
route, direction, or modality of transport must be performed, etc. In a CBR system, it
is this sequence of points representing the problem solution, at the very least, that
must be stored in a case for reuse in future route planning scenarios.

Assuming that a system is grounded in reality, the locations Iy, /,, I, /3, ..., |, must
be described as latitude and longitude or using some other method for specifying
coordinates or positions within the universe of operation of the system
unambiguously. Whether it is just the labels or pointers Iy, I, I, I3, ..., I, that are
stored in a case, and the associated spatial domain knowledge stored elsewhere, or
whether the actual values of the latitude and longitude that describe the locations are
stored in the case, is a design decision that must be made in a case-based route
planning system.

In SISBUSEC, locations represent subway stations and a case contains just the
labels of the stations that form a route from /, to /,. This is because subway stations
are likely to be repeated in several experienced routes (each stored in its own case),
especially transfer stations. If the same value for /, is given frequently in order to
plan many routes over time from the same initial location (e.g., one’s home or office
or hotel) to many others, then those stations near to /, will also appear in several
experienced routes. Because of this, in a separate database is where we store the
actual latitude and longitude (and additional knowledge, described below) related to
the different subway stations in a given city, and only the names of the stations are
repeated from one case to the next if several cases’ solution routes involve the same
stations. In the Prodigy-based system described in [4], coordinates are also used to
identify specific points (within the city of Pittsburgh). On the other hand, in the
Router system [5], perhaps the most similar existing system to SISBUSEC, the
symbolic names used for the streets of the Georgia Institute of Technology campus
and the offices, corridors, and other functional areas of the College of Computing
building don’t have any additional associated information to indicate their position in
“the real world.”

3 Case Memory Organization and Case Retrieval

In general we can classify case retrieval algorithms broadly into two different. types:
nearest-neighbor matching and inductive methods [6]. For a spatial task domalp such
as route planning, given a new problem specifying /, and I, nearest-neighbor

272 Andrés Gémez de Silva Garza, Lourdes Domenzain Ortega

matching would compare /, and /, to the endpoints /, and /, of the solution route
stored in a case. A perfect match occurs if ly=/, and [,=l4, in which case the solution
route stored in the case can be directly presented as a solution to the new problem. In
this situation, of course, the “nearest neighbor” is not really a neighbor, but rather the
exact route that connects the two locations of interest. Fig. 1 shows, both textually
and graphically, this situation in which a perfect match occurs betwegn a problem
specification and a case labeled a. For illustrative purposes, and without lo§s of
generality, in this and the rest of the figures in this paper we will assume tl?at retrieved
routes are of length 4 and that the graphical representation of the soluthn 1s to be read
from left to right (i.e., the leftmost location shown is the origin location /,, and the

rightmost location is the destination location 1a).

Situation 1: I)= L,y and [,=l,4
Retrieved case: a
Retrieved case solution: Ly, Ly, Loz, las laa
Desired solution = Retrieved case solution
= la0: [alr IaZ: la3: la4

la0 lal la.? la3 la4

*—o—0—0—90

Fig. 1. Situation in which a perfect match occurs between a route-planning problem and the
solution stored in a case.

A similar situation, also representing a perfect match but requiring the solution
retrieved from the case to be reversed before presenting it as a solution to the new
problem, occurs when /,=l, and /,=l;. This occurs when the case contains a route
from some location / to another location /, and one asks a system to plan a route from
I, to , and is illustrated in Fig. 2, which assumes that the match occurs between a
new problem specification and a case labeled . Note that this kind of situation only
makes sense in route planning and perhaps a few other tasks in which reversing the
components of a solution to a prior problem does not destroy the validity of the result
as a solution to a new problem. On the other hand, it doesn’t make sense to reverse
previously-known solution routes to come up with new problem solutions in all route
planning domains. In [4] reversal of routes stored in cases is not performed due to the
prevalence of one-way streets in Pittsburgh. Unlike most subway lines around the
world, one-way streets do not permit a traversal in both directions, so in this type of
situation reversal is not a valid way to reuse the solution stored in a case.

The two situations described so far involve perfect matches, but what can a system
do if there is no perfectly-matching case in memory? One solution is to give up,
another is to use an alternate reasoning method instead of CBR, but a third is to
retrieve the case that represents the closest-possible situation to the new problem,
even if no perfectly-matching case is available. This is the type of situation in which
nearest-neighbor retrieval (followed by case adaptation, which we consider below)
comes into play.

Case-Based Route Planning in the Mexico City Subway System 273

Situation 2: [,= [, and I;= I,
Retrieved case: b
Retrieved case solution: lyy, Iy), Ipzs, Lz, log
Desired solution = Reverse (Retrieved case solution)
= loa Iz Iz lys, Io

Iba Iz Dz oy Ipo

—eo—o—0—o

Fig. 2. Situation in which a perfect match occurs between a route-planning problem and the
solution stored in a case, but the solution must be reversed before presenting it.

For route planning tasks, there are two different degrees to which one might be able to
find a partially-matching case. First of all there might be a case in memory in which
either /, or /; match one of the endpoints of the route stored in the case (but the other
endpoint doesn’t match—otherwise we would have a perfect match and thus one of
the situations already described above). We will call this possibility P1. The second
possibility, P2, is that neither /, nor /; match either of the endpoints of any of the
solution routes in the cases stored in memory. In either situation, given a new
problem specification there might be several partially-matching cases, and we would
like the one that is nearest to the specification to be retrieved.

Let us assume that possibility P1 occurs, and that it’s /, that matches I, for a given
case. If that’s the only case for which /, matches /;, then that case is the nearest
neighbor to the new problem situation and should be retrieved. However, if there are
several cases for which /, matches /5, then some sort of tie-breaker criterion has to be
implemented. The most logical tie-breaker criterion for a spatial domain such as
route planning is to retrieve the case in which the other endpoint, /,, is least distant
from /; in comparison to the other endpoints of the rest of the partially-matching
cases. This case would be the nearest neighbor to the new problem situation. In the
Router system, since no real positions are associated with street intersections (which
is the type of location from or to which the system can plan routes), the tie-breaker
criterion used is to select the first partially-matching case found. Sometimes this
might turn out to be closest to the desired location than any other candidate partially-
matching case, but most times it won’t be.

Measuring the distance from /, to /, is not difficult assuming that these are not just
labels but have actual positions (whether latitude and longitude, or some equivalent
specification) associated with them, as in SISBUSEC (though the positions are not
stored in the case, as mentioned earlier, but rather in a separate database of spatial
knowledge). The nearest neighbor is the partially-matching case for which this
distance is the smallest, out of all the potential candidate cases. If possibility P2
occurs, then the nearest neighbor is the case, out of all the potential candidates, for
which the sum of the distances from /, to /, and from /, to I, is the smallest.

If possibility P2 occurs it means that neither /, nor /; match either of the endpoints
of any of the solution-routes in the cases stored in memory, which means that finding

274 Andrés Gomez de Silva Garza, Lourdes Domenzain Ortega

the nearest neighbor implies examining the entire case base once more (because all
cases are potential candidates) after having already examined it to determine that
there were no fully-matching or possibility-P1-type parfially-matchmg cases, before
deciding which case is nearest to the new problem situation. If the‘case base is large,
this would be a time-consuming process. This is what might happen with
SISBUSEC, since the Mexico City subway system has a total of 174 statiqns, and
thus there could potentially be 174*173/2=15051 different cases (because: this is the
total amount of different-problems that could be posed to the system) in the case

memory. '
This is the kind of situation that has led to the second general type of case retrieval

in CBR, the inductive retrieval mechanisms. For case bases which are too large to
make it feasible or logical to examine every single case to find how well it matches a
new problem situation, inductive retrieval implies pre-classifying the cases into
subsets. In some domains such as architectural design tasks [1] these §ub§ets might
overlap (a case may belong to several subsets), whereas in other doma{n.s it may not
make sense to do so. Associated with the subsets of cases are decision-tree-like
structures or procedures which provide indexing criterig by which a system can
narrow down the search for a matching (or partially matching) case to a subset of the
cases in memory. These structures provide an internal organization to a systt-:m’s case
memory, which may otherwise just be a “flat” list-li}<e structure grouping cases
together in no particular order (or perhaps in the order in which tl}ey were coded or
Jearned, or some other arbitrary ordering that doesn’t reflect the differing degrees of
similarity among the cases). -

In spatial reasoning domains the most natural way to group cases into subsets in
order to achieve faster retrieval times is to use the concept of “neighborhood.” If the
geographic neighborhoods of /, and /; are known (or can be easily determined), and
cases are somehow grouped together (classified) according to the neighborhoods that
the endpoints of the routes they contain belong to, then a large number of cases can
quickly be discarded without wasting time comparing them to the new problem
situation during retrieval. If either a large number of neighborhoods or a large
number of cases per neighborhood (both of which produce the same problem of
having to make too many comparisons during retrieval, as before) result from a “flat”
subdivision into neighborhoods, then another solution may be necessary. One
possibility is for a hierarchical subdivision into neighborhoods and sub-
neighborhoods into as many levels as needed. All of this, again, contrasts with non-
spatial domains in which subsets of cases that are grouped together according to
classification criteria that depend on the domain, whether the subdivision is
hierarchical or not, define only abstract “neighborhoods.”

In SISBUSEC, as mentioned earlier, we have a database which contains the
latitude and longitude of each subway station, but it also contains knowledge about
the neighborhood(s) that the stations belong to (and the connections between the
stations). In order to improve the quality of the solutions produced by the system, the
borders between neighborhoods in SISBUSEC are fuzzy, so stations lying on a border
have more than one neighborhood associated with them. This also occurs with the
Router system. In Router, however, the neighborhoods were constructed in an ad hoc
manner, with varying numbers of neighborhoods at each level of the hierarchy and
varying density of streets (or equivalent) in each neighborhood, whereas SISBUSEC

Case-Based Route Planning in the Mexico City Subway System 275

divides a geographical space into neighborhoods in a more systematic manner. The
subdivision algorithm (described in the next paragraph) can therefore be easily
automated in order to incorporate a new geographical area into the system without
having to designate the neighborhoods of locations manually, as we did for Mexico
City. The R-Finder system [7] has a two-level “hierarchy” of neighborhood-like areas
referred to as “grids,” into which they have divided the city of Singapore, and some
streets may be contained in more than one grid in a somewhat similar fashion to
SISBUSEC'’s and Router’s use of fuzzy neighborhoods. The R-Finder “hierarchy”
contains only two levels but is similar to Router’s in the sense that it is a hierarchy of
detail: at the highest level it is only the major roads and highways of Singapore that
are represented, and at the lowest level (the grid level, where grid borders are defined
by the major roads) is where the details about local roads, streets, and alleys are
included. For a medium-sized city like Singapore, two levels might be enough, but if
it were necessary to connect R-Finder to a similar system that contained knowledge
about several Malaysian cities and the roads that interconnect them (and connect them
to Singapore), or if it were necessary to group the roads in Singapore into more
categories than just “major roads” and “all other roads” in order to make route
planning more efficient, then more hierarchical levels may be necessary. The system
described in [8] only subdivides its geographical universe of operation in the sense
that it is split into cells which identify the possible initial and destination (and
intermediate) locations.

SISBUSEC’s method for defining neighborhoods is the following. A geographical
space is divided hierarchically into quadrants (i.e., into four subparts, no more and no
less), producing what is known in geographical information systems [9], where it is a
structure that is used frequently, and in computational geometry, as a “quad tree”
[10]. Subdividing into smaller or larger amounts of neighborhoods might introduce
north-south and/or east/west asymmetries into the resulting hierarchy and would not
take advantage as fully of the idea of separating, at each node in the hierarchy, into a
“reasonable” number of subparts. Each quadrant in SISBUSEC is recursively
subdivided into quadrants if the situation merits it. This occurs when the locations in
each resulting quadrant remain connected to each other within the quadrant and when
the resulting quadrants end up having connections between them (otherwise the
resulting “quadrants” are not really neighborhoods but very small sets of locations
isolated from the rest of the locations in the geographical space). Fig. 3 shows, as a
flat “map,” one possible configuration of a geographical area after subdividing it in
this quadrant-based fashion. Fig. 4 shows the hierarchy of neighborhoods and sub-
neighborhoods that the subdivisions shown in Fig. 3 represent.

In SISBUSEC it is the leaf neighborhoods of each subway station that are stored in
the database of spatial domain knowledge, since the hierarchy only serves to
subdivide the geographical space. In contrast, in Router the hierarchy does not just
subdivide the geographical area, but introduces more detail as one descends in the
hierarchy (certain streets and therefore certain intersections are not mentioned at the
root node, but appear in one or more of the neighborhoods at the next-lowest level
due to their more local importance, etc.).

Returning to the issue of retrieving cases, due to the possibility that only partially-
matching cases for a given new problem may be available, the potentially large size of
the case base, and the spatial nature of the system’s task, in SISBUSEC we have come

276 Andrés Gémez de Silva Garza, Lourdes Domenzain Ortega

up with a case representation that allows us to combine aspects of nearest-neighbor
and inductive retrieval. Our case memory is flat in the sense that it is just one
database table (rather than several, each representing a subset of the cases) in which
each row represents a given case, which would normally imply that nearest-neighbor

retrieval is performed.
Bl
Qo = Quo Qn

.IlllIllllll-lll‘flllllll.--lll

. Q2 Qi3

Qa1

Q m Qa0 i Qaon

" Qi i Quos

.lllllll:lllllll

" Qu

Qs

IIIlIllIIIIl}-'lll‘ll...lll..lll.l

Fig. 3. Quadrant-based subdivision of a geographical space into neighborhoods and sub-
neighborhoods.

On the other hand, the attributes with which we represent each case include not just
the solution route, but also the origin and destination locations involved in the route,
as well as their leaf-level neighborhoods, as distinct database attributes. This allows
us to use /, and /; as primary indices during case retrieval, but also to use g, and g,
(the quadrants or neighborhoods to which /, and /; belong) as secondary indices in
case no perfect match occurs. The data that is retrieved if there is a match between a
new problem situation and the primary and/or secondary indices of a case is the other
attribute of the case: the solution (route) it contains. All of this is done without
explicitly organizing the case memory into subsets of cases hierarchically. This
contrasts with Router’s approach, in which probing the case memory implies
navigating down a hierarchical structure that reflects the organization of
neighborhoods in its domain until a fully- or partially-matching case is retrieved or
until a leaf neighborhood has been reached without finding a relevant case. Using g,
and g, as secondary indices means that even if only partially-matching cases are
found, they won’t be just any random cases from memory, but rather they will be in
the neighborhood (both literally and figuratively) of being good solutions. If no
match is found between a new problem situation and any case in memory when using

Case-Based Route Planning in the Mexico City Subway System 277

even the secondary indices to probe the case memory, then it means that the system
doesn’t have any experience that is close enough to the new problem to be able to
provide even a partially-useful solution. Case retrieval (or finding out that no cases
were retrieved) in SISBUSEC is thus the result of performing between one and three
quick database queries, depending on whether a perfect match, or partial matches of
types P1 or P2 (as described above), occurred. Fig. 5 shows the case representation
scheme used in SISBUSEC which supports this type of retrieval (each row in the
database that contains the case memory describes a case in this way).

.
OO0 O
]

1 1 1 1
Qio Qu Qi Qi ﬁ Qs Qs Q13
' Q300 ” Qso1 | Qsoz I Q303 ’

Fig. 4. Hierarchical (quad-tree) representation of the neighborhoods and sub-neighborhoods
shown as a map in Fig. 3.

4 | Case Adaptation

If no perfect or partial matches were found in the case memory for a given new
problem, then CBR is not a feasible way to provide a solution to the problem. In
these situations, SISBUSEC relies on the A* search algorithm [11], using straight-line
distance as a heuristic function, to look for a solution using the graph which is
implicit in the database that stores the domain knowledge about the locations and
connections between the subway stations. This is similar to what happens in [4], [5],
and [7], although Router’s alternate algorithm is a heuristic map-based (“model-
based”) search that is not based on A*. If only partial matches were found during
retrieval, then one of the retrieved cases must be adapted. There are several possible

278 Andrés Gomez de Silva Garza, Lourdes Domenzain Ortega

situations depending on whether it was possibility P1 or P2 (described above) that
occurred during retrieval. Whichever possibility occurred, what we know is that both
I, and [, are either identical to or in the neighborhood of the endpoints of the route
contained in the retrieved case. Since they are at worst close to the required locations,
then case adaptation can be performed simply by extending the retrieved case
(appending a new route) at one or both ends as needed. Router also operates in this
fashion, as well as the system described in [8]. In SISBUSEC, the new route(s) to
append are obtained using the same A* search algorithm that can be used by the
system when no cases are retrieved, but are local searches (within the
neighborhood(s) of the endpoints of the retrieved route) and therefore short and quick

to perform.

Case i:
Solution: 1,'(), I,'[, I,'z,. .« o I,',,
Primary index: [
Primary index: I,
Secondary index: gio
Secondary index: g,

Fig. 5. Case representation scheme used in SISBUSEC to support neighborhood-
based retrieval. '

If possibility P1 occurred, then either the origin location matched one of the endpoints
of the retrieved case but the destination location only matched the neighborhood of
the other endpoint (possibility Pla), or else the destination location matched one of
the endpoints and the origin location only matched the neighborhood of the other
endpoint (possibility P1b). Fig. 6 illustrates possibility Pla assuming that the
retrieved case is labeled ¢. The thick line shows the retrieved solution, and the thin
line represents the appended route segment resulting from case adaptation.

Situation 3: /,= I, and qd= G4 (but I;# Id)
Retrieved case: ¢
Retrieved case solution: Iy, I, Ics, L3, I
Desired solution = Append (Retrieved case solution, Path(l.4 1))

= teor Iclr IcZ: IcJ: Ic4r Id

lcO lcl Ic2 lc3 lc4 ld
*—o—0—0—0 ¢

Fig. 6. Situation in which a partial match occurs between a route-planning problem and the
solution stored in a case such that the origin location matches one of the endpoints of the route
in the case, but the destination location is only close to the other endpoint.

A similar possibility (P1a’) would occur if /, matches the other (rightmost) endpoint,
lc,, of the retrieved case, instead of the leftmost one, lcy, but we do not show this
graphically. If possibility Pla’ occurs, then case adaptation would involve reversing

Case-Based Route Planning in the Mexico C, ity Subway System 279

the retrieved route before appending a new route segment to its right. We do not
show possibility P1b graphically. A similar possibility, which we also do not show
graphically (P1b’), would occur if /; matches the other (leftmost) endpoint, /g, of the
retrieved case, instead of the rightmost one, /,,. This would mean that case adaptation
would involve reversing the retrieved route before appending a new route segment to
its left.

Assuming that neither the origin nor the destination locations were found to match
any case in memory, but at least one case was found for which the neighborhoods of
its endpoints match those of /, and l;, then possibility P2 occurred during case
retrieval. This can again be broken down into two situations, P2a and P2b. In both
situations, the retrieved route must be extended during case adaptation by appending
new routes to both endpoints of the route obtained from the retrieved case (instead of
only one endpoint, as in all the variants of possibility P1). In possibility P2a, the
origin location’s neighborhood matches the neighborhood of the leftmost endpoint of
a case (and the destination location’s neighborhood matches the neighborhood of the
rightmost endpoint of the same case). In possibility P2b, the origin location’s
neighborhood matches the neighborhood of the rightmost endpoint of a case (and the
destination location’s neighborhood matches the neighborhood of the leftmost
endpoint of the same case). In P2b, the retrieved route must be reversed before
appending the two new routes. We do not show either of these two possibilities
graphically, as they are quite similar to the situation shown in Fig. 6, except that the
involve adaptation at both ends of the retrieved solution path instead of just one.

This method of adapting the route in a partially-matching case by appending one or
two extra route segments to its endpoints can potentially lead to routes that contain
repeated route segments. This is illustrated in Fig. 7, which assumes that the retrieved
case is labeled A. In this example, it is assumed that the origin location in the new
problem specification matched the leftmost endpoint of the retrieved case (i.e., [h=1,),
but the destination location was only close to the rightmost endpoint (i.e., g,+=q, but
lhi#lg). 1t is further assumed that the best route from Iy4 to 14, as found by A* during
case adaptation, passes through /,;, which happens to be one of the intermediate
points in the solution retrieved from the case, thus ending up with the ;-4 route
segment appearing twice in the route resulting from adaptation.

The Router system, which uses the same principles as SISBUSEC to adapt cases,
Just leaves the solutions like they were produced by the case adaptation algorithms
equivalent to those described above, so some solutions would be as illogical as that
shown in Fig. 7. In SISBUSEC, additionally to the above algorithms the resulting
route is examined for duplicate route segments which, if found, are eliminated before
presenting the route as a final solution. Thus SISBUSEC would produce the route
shown in Fig. 8 as the final solution to the route that results from the first phase of
adaptation as shown in Fig. 7.

In contrast to the previous approaches to case adaptation, [4] adapts cases by
concatenating parts of as many cases as needed (partial cases), so the elimination of
duplicate segments is not necessary (as they wouldn’t appear in the constructed
route—their avoidance is programmed into the case composition algorithm). A
similar approach is followed by [12], though the emphasis in that system is the
construction of a solution to one new problem associated with a given user from
information related to several previous problems that might be stored in several case

280 Andrés Gomez de Silva Garza, Lourdes Domenzain Ortega

bases, each of which belongs to (was generated by) a different user, i.e., collaborative
case-based route planning.

Retrieved case solution: lig, lhs lh2 Ihse Ihe

Path (11,4. Id) = I;,(, ll,j. Id
Append (Retrieved case solution, Path (s, 14)) = lhor Ihis Ihz Iz bnar s Lo

Lo by Iz Iz lne

1

la

Fig. 7. Situation in which appending a route to the rightmost endpoint of a
retrieved case (due to a partial match occurring during retrieval) results in a repeated

route segment (and an illogical solution route).

Desired solution = RemoveDuplicateConnections (Append (Retrieved case solution, Path ({44, I,)))
= RemoveDuplicateConnections(lsa las Iz lhs. Inas In3 L)

=y Inoe In2s Dpss Lo

o I 2 Ins -

*—0—0—1

la

Fig. 8. Final solution route after eliminating the repeated route segments in the partial solution
shown in Fig. 7 which results from case adaptation.

5 Case Learning

Since SISBUSEC can rely on the A* search algorithm to solve any problems in its
problem space when a case is not available that can directly or partially help to solve
the problem, then it can (and does) begin to operate even with an empty case base.
This also occurs with [4], [5], [7], and [8]. When this happens, the system can store
the solution as a case in order to rely more and more on these experiences, as more
and more of them accumulate, when solving future problems in its domain of
expertise. In SISBUSEC, this case storage/learning module takes into account the
case representation and indexing scheme described above and illustrated

schematically in Fig. 5.

Case-Based Route Planning in the Mexico City Subway System 281

6 Discussion

We have discussed many of the issues related to representation, storage, retrieval, and
adaptation when using CBR for the task of route planning. We have also explained
the decisions we have made, related to these issues, in order to implement
SISBUSEC, a system that performs case-based route planning in order to plan routes
within Mexico City’s subway system. The name of the system is a contraction of a
Spanish phrase meaning “sector-based search system” (sistema de busqueda
sectorial), from the fact that the concept of neighborhoods (quadrants, sectors) is
central to the system’s method for route planning. As we have shown, the concept of
neighborhood has an impact in all aspects of the system’s design: representation,
storage, retrieval, and adaptation of cases. Finally, we have shown how some of the
implementation decisions in SISBUSEC are similar and some are different from those
made during the construction of similar systems that use CBR for route planning.

References

1. Gémez de Silva Garza, A., Maher, M.L.: Design by Interactive Exploration Using Memory-
Based Techniques. Knowledge-Based Systems Vol. 9 No. 3 (May 1996), pp. 151-161.

2. MacGregor, J.M., Chronicle, E.P., Ormerod, T.C.: A Comparison of Heuristic and Human
Performance on Open Versions of the Traveling Salesperson Problem. The Journal of
Problem Solving Vol. 1 No. 1 (Fall 2006), pp. 33-43.

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms (Second
Edition). The MIT Press, Cambridge, Massachusetts (2001).

4. Haigh, K.Z, Veloso, M.: Route Planning by Analogy. In: Veloso, M.M. and Aamodt, A
(eds.): Case-Based Reasoning Research and Development: Proceedings of the First
International Conference on Case-Based Reasoning (ICCBR-95). Lecture Notes in
Computer Science, Vol. 1010 (1995), pp. 169-180.

5. Goel, A K., Ali, K., Donnellan, M., Gémez de Silva Garza, A., Callantine, T.: Multistrategy
Adaptive Path Planning. IEEE Expert Vol. 9 No. 6 (December 1994), pp. 57-65

6. Wang, X.: Basic Case-Based Reasoning Techniques. Chapter 2 of A Web-Based Case-
Based Reasoning Tool, Master’s Thesis, University of Wyoming (2000).

7. Liu, B.: Intelligent Route Finding: Combining Knowledge, Cases and an Efficient Search
Algorithm. European Conference on Artificial Intelligence (1996), pp. 380-384.

8. Kruusmaa, M., Svensson, B.: Using Case-Based Reasoning for Mobile Robot Navigation.
Proceedings of the Sixth German Workshop on Case-Based Reasoning (1998).

9. Burrough, P.A., McDonnell, R.A.: Principles of Geographic Information Systems. Oxford
University Press (1998).

10. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications (2™ edition, revised). Springer-Verlag (2000).

I'l. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems, Science and Cybemnetics Vol. 4 No. 2
(1968), pp. 100-107.

12. McGinty, L., Smyth, B.: Identifying the Routes Best Travelled by Collaborative CBR.
Proceedings of the Twelfth Irish Conference on Artificial Intelligence and Cognitive
Science (2001), pp. 65-74.

